| Hazard
zone | Inhalation toxicity | |----------------|---| | D | LC ₅₀ greater than 3000 ppm or less than or equal to 5000 ppm. | (b) The criteria specified in paragraph (a) of this section are represented graphically in §173.133, Figure 1. [Amdt. 173–224, 55 FR 52634, Dec. 21, 1990, as amended at 56 FR 66268, Dec. 20, 1991; Amdt. 173–138, 59 FR 49133, Sept. 26, 1994; 67 FR 61013, Sept. 27, 2002] ## §§ 173.117-173.119 [Reserved] ## § 173.120 Class 3—Definitions. - (a) Flammable liquid. For the purpose of this subchapter, a flammable liquid (Class 3) means a liquid having a flash point of not more than 60 °C (140 °F), or any material in a liquid phase with a flash point at or above 37.8 °C (100 °F) that is intentionally heated and offered for transportation or transported at or above its flash point in a bulk packaging, with the following exceptions: - (1) Any liquid meeting one of the definitions specified in §173.115. - (2) Any mixture having one or more components with a flash point of 60 °C (140 °F) or higher, that make up at least 99 percent of the total volume of the mixture, if the mixture is not offered for transportation or transported at or above its flash point. - (3) Any liquid with a flash point greater than 35 °C (95 °F) that does not sustain combustion according to ASTM D 4206 (IBR, see §171.7 of this subchapter) or the procedure in appendix H of this part. - (4) Any liquid with a flash point greater than 35 °C (95 °F) and with a fire point greater than 100 °C (212 °F) according to ISO 2592 (IBR, see §171.7 of this subchapter). - (5) Any liquid with a flash point greater than 35 $^{\circ}$ C (95 $^{\circ}$ F) which is in a water-miscible solution with a water content of more than 90 percent by mass. - (b) Combustible liquid. (1) For the purpose of this subchapter, a *combustible liquid* means any liquid that does not meet the definition of any other hazard class specified in this subchapter and has a flash point above 60 °C (140 °F) and below 93 °C (200 °F). - (2) A flammable liquid with a flash point at or above 38 °C (100 °F) that does not meet the definition of any other hazard class may be reclassed as a combustible liquid. This provision does not apply to transportation by vessel or aircraft, except where other means of transportation is impracticable. An elevated temperature material that meets the definition of a Class 3 material because it is intentionally heated and offered for transportation or transported at or above its flash point may not be reclassed as a combustible liquid. - (3) A combustible liquid that does not sustain combustion is not subject to the requirements of this subchapter as a combustible liquid. Either the test method specified in ASTM D 4206 or the procedure in appendix H of this part may be used to determine if a material sustains combustion when heated under test conditions and exposed to an external source of flame. - (c) Flash point. (1) Flash point means the minimum temperature at which a liquid gives off vapor within a test vessel in sufficient concentration to form an ignitable mixture with air near the surface of the liquid. It shall be determined as follows: - (i) For a homogeneous, single-phase, liquid having a viscosity less than 45 S.U.S. at 38 °C (100 °F) that does not form a surface film while under test, one of the following test procedures shall be used: - (A) Standard Method of Test for Flash Point by Tag Closed Cup Tester, (ASTM D 56) (IBR; see §171.7 of this subchapter): - (B) Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus, (ASTM D 3278) (IBR; see §171.7 of this subchapter); or - (C) Standard Test Methods for Flash Point by Small Scale Closed Tester, (ASTM D 3828) (IBR; see §171.7 of this subchapter). - (ii) For a liquid other than one meeting all the criteria of paragraph (c)(1)(i) of this section, one of the following test procedures must be used: - (A) Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, (ASTM D 93) (IBR; see §171.7 of this subchapter). For cutback asphalt, ## § 173.121 use Method B of ASTM D 93 or alternative tests authorized in this standard: - (B) Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus (ASTM D 3278) (IBR; see §171.7 of this subchapter); - (C) Determination of Flash/No Flash—Closed Cup Equilibrium Method (ISO 1516) (IBR; see §171.7 of this subchapter): - (D) Determination of Flash point—Closed Cup Equilibrium Method (ISO 1523) (IBR; see §171.7 of this subchapter); - (E) Determination of Flash Point—Pensky-Martens Closed Cup Method (ISO 2719) (IBR; see §171.7 of this subchapter); - (F) Determination of Flash Point—Rapid Equilibrium Closed Cup Method (ISO 3679) (IBR; see §171.7 of this subchapter); - (G) Determination of Flash/No Flash—Rapid Equilibrium Closed Cup Method (ISO 3680) (IBR; see §171.7 of this subchapter); or - (H) Determination of Flash Point—Abel Closed-Cup Method (ISO 13736) (IBR; see § 171.7 of this subchapter). - (2) For a liquid that is a mixture of compounds that have different volatility and flash points, its flash point shall be determined as specified in paragraph (c)(1) of this section, on the material in the form in which it is to be shipped. If it is determined by this test that the flash point is higher than -7 °C (20 °F) a second test shall be made as follows: a portion of the mixture shall be placed in an open beaker (or similar container) of such dimensions that the height of the liquid can be adjusted so that the ratio of the volume of the liquid to the exposed surface area is 6 to one. The liquid shall be allowed to evaporate under ambient pressure and temperature (20 to 25 °C (68 to 77 °F)) for a period of 4 hours or until 10 percent by volume has evaporated, whichever comes first. A flash point is then run on a portion of the liquid remaining in the evaporation container and the lower of the two flash points shall be the flash point of the material. - (3) For flash point determinations by Setaflash closed tester, the glass syringe specified need not be used as the method of measurement of the test sample if a minimum quantity of 2 mL (0.1 ounce) is assured in the test cup. - (d) If experience or other data indicate that the hazard of a material is greater or less than indicated by the criteria specified in paragraphs (a) and (b) of this section, the Associate Administrator may revise the classification or make the material subject or not subject to the requirements of parts 171 through 185 of this subchapter. - (e) Transitional provisions. The Class 3 classification criteria in effect on December 31, 2006, may continue to be used until January 1, 2012. [Amdt. 173-224, 55 FR 52634 Dec. 21, 1990] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §173.120, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. ## § 173.121 Class 3—Assignment of packing group. (a)(1) The packing group of a Class 3 material is as assigned in column 5 of the §172.101 Table. When the §172.101 Table provides more than one packing group for a hazardous material, the packing group must be determined by applying the following criteria: | Packing group | Flash point (closed-cup) | Initial boiling point | | |---------------|--------------------------|---|--| | I
II | <23 °C (73 °F) | ≤35 °C
(95 °F)
>35 °C
(95 °F)
>35 °C
(95 °F) | | - (2) The initial boiling point of a Class 3 material may be determined by using one of the following test methods: - (i) Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure (ASTM D 86) (IBR; see §171.7 of this subchapter); - (ii) Standard Test Method for Distillation Range of Volatile Organic Liquids (ASTM D 1078) (IBR; see §171.7 of this subchapter); - (iii) Petroleum Products—Determination of Distillation Characteristics at Atmospheric Pressure (ISO 3405) (IBR; see § 171.7 of this subchapter); - (iv) Petroleum Products—Determination of Boiling Range Distribution—